Biodiversity Information Science and Standards : Conference Abstract
|
Corresponding author: Jörg Holetschek (j.holetschek@bgbm.org)
Received: 11 Apr 2019 | Published: 13 Jun 2019
© 2019 Jörg Holetschek, Gabriele Droege, Anton Güntsch, Nils Köster, Jeannine Marquardt, Thomas Borsch
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation: Holetschek J, Droege G, Güntsch A, Köster N, Marquardt J, Borsch T (2019) Gardens4Science: Setting Up a Trusted Network for German Botanic Gardens Using Open Source Technologies. Biodiversity Information Science and Standards 3: e35368. https://doi.org/10.3897/biss.3.35368
|
|
Botanic gardens are an invaluable refuge for plant diversity for conservation, education and research. Worldwide, they manage over 100,000 species, roughly 30% of all plant species diversity, and over 41% of known threatened species; the botanic gardens in Germany house approximately 50,000 different species (
Sharing data from (living) specimen collections online has become routine in the past years; initiatives like PlantSearch of Botanic Gardens Conservation International and the Global Biodiversity Information Facility (GBIF) allow requesting specimens of interest. However, these catalogues are accessible for everyone. Legitimate concerns about potential theft and legal issues keep curators of living collections from sharing their full catalogues; in most cases, only filtered views of the data will be fed into these networks.
Gardens4Science (http://gardens4science.biocase.org) aims at overcoming this issue by creating a trusted network between botanic gardens that allows an unfiltered access on the constituents’ accession catalogues. This unified data pool needs to be automatically synchronized with the individual garden’s catalogues, irrespective of the collection management systems used locally. For the three-year construction phase of Gardens4Science, focus is on Cactaceae and Bromeliaceae, since these families are well-represented in the collections and ideal models for studying the origin of biodiversity on evolutionary time scale.
Gardens4Science’s technical architecture (Fig.
In addition to harvesting, B-HIT performs several data cleaning steps. Foremost, it reconciles scientific names from the source databases with a taxonomic backbone (currently caryophyllales.org for Cactaceae and the Butcher and Gouda checklist for Bromeliaceae), which allows harmonizing the taxonomies from the different sources and the correction of outdated species names and orthographic mistakes. Provenance information are validated (for example specified geographic coordinates versus country) and corrected, if possible; date values are parsed and converted into a standard format. The issues found and potential corrections are compiled in reports and send to the curators, so the mistakes can be rectified in the source databases.
In the construction phase, Gardens4Science consists of seven German Botanic gardens that share their accessions of the Bromeliaceae and Cactaceae families. Up to now (March 2019), 19.539 records have been published in Evo-BoGa, with about 3,500 to be added until the end of the project in January 2020. After the construction phase, it is planned to extend the network to include more Botanic Gardens – both from Germany and other countries – as well as additional plant families.
Biodiversity data networks, Open Source, BioCASe, ABCD, Botanical Gardens
Jörg Holetschek
BiodiversityNext 2019