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Abstract

The  majority  of  biodiversity  data  is  not  findable,  accessible,  integratable,  or  reusable,

partially because of a lack of metadata. Taxonomic names as metadata are useful, but not

sufficient because these names may be updated as knowledge progresses. There is a

great need for tools and services that can scale up to create and maintain metadata for the

vast and varied long tail of dark data. Here we examine the use of GNFinder as a tool for

creating  and  maintaining  metadata  using  mentions  of  taxa  in  text  from  publications

corresponding to data sets deposited in Dryad. Most studied taxa were mentioned in the

publication using a properly formed scientific name, with a few exceptions for studies that

only used vernacular names and only mentioned taxa in the corresponding files. GNFinder

had a high F1 Score (0.86) representing a balance between precision (0.91) and recall

(0.82).  GNFinder  had  lower  performance  when  a  name  string  was  an  irregular

abbreviation, had unexpected capitalization or punctuation, or contained a qualifier (like aff.

or cf.). Approximately 14% of the name strings identified in text published from 1996 to

2012 were outdated and updated to a current, valid name. Automated metadata creation

and  maintenance  at  scale  using  GNFinder  can  make  it  easier  to  find  biodiversity

publications as demonstrated by the Biodiversity Heritage Library and HathiTrust.
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Introduction

Much attention has been given to the “data deluge” (Hey et al.  2009) and the need to

render  these  data  computable  (Li  and  Chen  2014)  in  order  to  successfully  address

pressing  societal  challenges  (Guo  et  al.  2015).  The  challenges  are  especially  acute

because  of  the  large  amounts  of  “long  tail”  and  “legacy”  data  that  are  not  findable,

accessible, integratable, or reusable (Thessen and Patterson 2011, Heidorn 2008). One of

the critical steps to unifying data is the application of data and metadata standards so that

information can be effectively discovered, indexed, organized, and made ready for analysis

(Schriml  et  al.  2020).  Some subdisciplines within  biology have worked to  address this

problem by developing various types of data and metadata standards (e.g., Field et al.

2008, Wieczorek et al. 2012). Projects like the Monarch Initiative (Shefchek et al. 2020),

Planteome  (Cooper  et  al.  2018),  Translator  (Fecho  et  al.  2022),  the  Global  Biotic

Interactions  database  (Poelen  et  al.  2014),  the  Global  Biodiversity  Information  Facility

(Telenius 2011), and  many  more  use  a  wide  variety  of  community-developed  data,

metadata,  formatting,  and  exchange  standards  to  integrate  and  make  computable

incredibly heterogeneous biology knowledge. The application of these standards has seen

a steady increase in some disciplines, but the backlog of non-computable data remains

vast (Marshall et al. 2018, Petty et al. 2020). There is a great need for tools and services

that can scale up to create and maintain metadata for the quantity and variety of data in the

long tail. The absence of computable metadata has severely impaired data discoverability

in biodiversity (see Thessen et al. (2012b) for a specific example; also Walls et al. (2014), 

Mounce (2015)) and slows progress toward data-driven biology.

One  unique  aspect  of  biodiversity  data  is  that  scientific  names  can  be  used  as  near

universal metadata (Patterson et al. 2010). There are rules of nomenclature that govern

the use, representation, and modification of scientific names. Despite this standardization,

names  make  poor  identifiers  because  they  are  not  unique  or  persistent  identifiers  for

taxonomic  concepts  (such  as  species)  and  the  continual  nature  of  scientific  discovery

prevents them from ever being so. Names are not represented consistently in publications

and  data  sources  (Patterson  et  al.  2016,  Page  2011).  Adequately  managing  scientific

names as metadata requires tools that automatically find names in their various forms in

data sources (Gerner et al. 2010, Thessen et al. 2012a, Le Guillarme and Thuiller 2022, 

Pafilis  et  al.  2013)  and  generate  computable  metadata  that  allows  for  resolution  of

taxonomic concepts over time. This requires more than a standard. This requires a “living”

metadata file that can be automatically updated in a transparent, traceable way. Such a file

will  help  to  incorporate  more  biodiversity  data  into  the  growing  body  of  computable

biological knowledge.

Here we examine the feasibility of living metadata in biodiversity using GNFinder, a tool

that can find scientific names in text with a high degree of precision and recall and return
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the corresponding current, valid name in JSON or CSV format. GNFinder was developed

with the goal of processing everything ever published and is currently being used by the

Biodiversity Heritage Library (BHL) (Mozzherin and Myltsev 2017), the Encyclopedia of Life

(Thessen  and  Parr  2014),  HathiTrust  (Mozzherin  et  al.  2022),  and  TaxonWorks.  For

example, GNFinder processes the 60 million pages in BHL in seven hours on a laptop

computer and the 6 billion pages in the HathiTrust in less than a day on an HPC cluster

(Mozzherin et al. 2022). While GNFinder records the exact location of a taxonomic name in

text, this study examined the utility of GNFinder for adding current taxonomic names as

document-level metadata to improve data discoverability.

Materials and Methods

This paper seeks to determine the efficacy of GNFinder for adding taxonomic metadata to

the published literature.  As a result,  annotations are made and results  reported at  the

document  level.  Multiple  instances of  the same name string in  a  document  were only

counted once.

Description of the Data

Dryad is a repository for ecology and evolution data files that correspond to publications

(Vision 2010). We  randomly  chose  250  data  packages  from  Dryad  and  retrieved  the

corresponding publication for analysis in 2012. Each data package consisted of one or

more data files (from Dryad) and one publication pdf file (from our institution library). Only

some of  the manuscript  pdf  files were machine readable.  Others were scanned library

copies. The scans were OCRed in 2020 using Adobe Acrobat Pro. Data files were in a

variety of formats including txt, nex, docx, and xlsx among others. We were able to analyze

the  manuscript  pdfs  and  data  files  from  215  data  packages.  The  txt  versions  of  the

manuscript pdfs used in this study are available in GitHub (Mozzherin 2022f).

Description of GNFinder

GNFinder is a web service that uses a combination of naive Bayes, rules, and lists to find

scientific  names  in  text  (Mozzherin  2022a,  Mozzherin  et  al.  2018).  The  rules  create

features that the Bayesian algorithm uses to calculate a score (Fig. 1). There are two types

of rules:

1. heuristic, based on a “stop” list containing terms that are likely to appear with, but

not be a part of a scientific name (such as “environmental sample”), a “caution” list

containing words that are frequently used in European languages that also appear

in scientific names, and a “go” list containing terms that are highly likely to only be

used in a scientific name as a genus or a specific epithet, and

2. statistical, for example, “are the word endings common in Latin”.
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Figure 1. 

Example output from GNFinder showing the results of the heuristic and statistical rules

used by the naive Bayes algorithm to calculate the final score. In this example GNFinder

identified the name Canis familiaris with high odds of being a taxonomic name based on the

following criteria. This name is in two separate “go” lists (A and B). Both the genus and the

specific epithet have endings that are common in Latin (C and D). The length of the specific

epithet and the genus are within expected values (E and G). The name is not an abbreviation

(F). All of these features were used by a naive Bayes algorithm to calculate the final “odds”

score, in this case, 11.56. The Bayesian prior was set at 0.1 (H).
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The  score  (result  of  naive  Bayes)  is  represented  as  “odds”  instead  of  a  probability.

GNFinder output can be configured to show the results from each of the rules and the final

Bayesian score (Fig. 1).

Once GNFinder has recognized a name in the text,  the name string is  parsed into its

semantic elements such as genus name, specific epithet, year of publication, authorship,

etc. using GNParser (Mozzherin 2022b, Mozzherin et al. 2017). Parsing is essential for

matching different variants of taxonomic names (such as Canis familiaris Linneaus and

Canis familiaris L.). This is a process of name string “normalization” that can establish the

canonical form of the name. Normalization is essential for finding the current, valid name

according to a user-chosen taxonomic reference using GNVerifier (Mozzherin 2022c).

GNVerifier compares the name string found by GNFinder to names in a list of over 200

reference taxonomies (Mozzherin 2022d). The default setting looks in all available lists and

prioritizes results from Catalogue of Life (Hobern et al. 2021). Users can choose to view all

available  matches or  only  the best  match.  GNVerifier  compares seven features of  the

found name and the matched name to calculate a score used to rank the matches (Fig. 2).

In this way, if GNFinder finds a name that is no longer in contemporary use, it may be able

to  return  the  current  name.  This  process  of  matching  old  names to  current  names is

referred to as name resolution.

GNFinder can be accessed directly through the webpage (Mozzherin 2022a) or by using

the API (Mozzherin 2022e). Complete documentation of GNFinder and description of the

JSON output can be found on GitHub (Mozzherin et al. 2018).

Figure 2. 

Example GNVerifier score matching “Canis familiaris” found name string to Canis lupus

familiaris Linnaeus, 1758 in the Catalogue of Life. The final score (G) is calculated based

on the following seven attributes  and used to  sort  results:  A)  Are  the  names uninomials,

binomials, or trinomials? B) Do the names share an infraspecific rank, such as variety or form?

C) Do the names match exactly? D)  How carefully  curated is  the source of  the matched

name? E) Does the author and year information match? F) Is the found name a synonym of

the matched name?
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Data Preparation

Two human annotators found every unique name string used to refer to a taxon in every

manuscript  pdf  for  the  215  publications  (Thessen  2022).  Manuscripts  were  analyzed

without the References sections. If a taxon name was used as an adjective, such as in

“crocodilian anatomy,” it was not included in the annotator lists. Names of clades that were

not taxonomic names, like “deuterostome,” were not included in annotator lists. Vernacular

names  were  collected,  but  were  not  part  of  the  GNFinder  performance  calculations.

Mentions of a genus were included as a separate reference to a taxon even if a species

within that genus was also mentioned. The results from the annotators were compared to

calculate annotator agreement. In order to normalize the different types of pdf files, each

pdf  was  transformed  to  a  text  file  using  Adobe  Acrobat  Pro  before  being  passed  to

GNFinder.

Testing Performance

GNFinder returned all of the found name strings and their associated taxon concepts in a

CSV file and in a JSON file (Mozzherin 2022f). The results from the annotators and from

GNFinder were compared and performance metrics for GNFinder were calculated using a

Python  script  (Thessen  2022).  Results  from  GNVerifier  were  not  used  to  calculate

performance metrics. Results were not filtered using the Bayes odds score. Results from

GNFinder and the human annotators were used to calculate precision*  (a measure of

correctness), recall*  (a measure of completeness), and F1 Score*  (harmonic mean of

precision and recall).

To describe the advances made by GNFinder, we took a subset (17 randomly selected) of

the 215 publications and calculated performance metrics using several  other published

name-finding  tools:  TaxonFinder  (Leary  et  al.  2007),  NetiNeti  (Akella  et  al.  2012),

LINNAEUS  (Gerner  et  al.  2010),  TaxoNERD  (Le  Guillarme  and  Thuiller  2022),

ORGANISMS (Pafilis et al. 2013), and Quaesitor (Little 2020) for comparison.

Assessment of Metadata Creation

The subset of publications used to compare GNFinder performance to other, similar tools

was also used to explore the utility of GNFinder for creating metadata. To test this, we

created a list of taxa represented by all of the name strings recorded by the annotators

from the publication and the corresponding data files in Dryad. For each data package

(publication and data files) we calculated the total number of taxa present, the taxa only

represented in the data files, the taxa only represented by a vernacular name, and the taxa

only represented as an improperly formed scientific name. These lists included higher level

taxa that appeared in the text or data, or as a vernacular or a scientific name, even when a

child taxon was present. Paraphyletic taxa referred to by a vernacular name where counted

as being represented by a vernacular name only unless all of the scientific names implied

by that vernacular name were also present (e.g.,  barrel  cactus is a paraphyletic group

including Echinocactus and Ferocactus).

1

2 3
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To explore the prevalence of outdated names in the literature, we examined the results

from GNVerifier.  Any  names that  were  found to  be  exact  matches  for  synonyms (i.e.,

matchType  =  Exact  and  isSynonym =  True)  were  considered,  for  the  purpose  of  this

exercise, as outdated names even though they may reflect different taxonomic preferences

of the sources.

Results

Annotator Agreement

To test annotator agreement in recognizing name strings, 27 manuscript  pdf files were

processed by both annotators. Vernacular names were not included, but abbreviations of

scientific names were included. A Cohen’s kappa coefficient (Cohen 1960) was calculated

for each data file and for the overall  dataset.  The kappa agreement for  individual  files

ranged from 0.534 to 0.963. The overall kappa agreement was 0.832, which indicates good

agreement between the annotators.

GNFinder Performance

GNFinder performance was calculated for 215 manuscripts (Table 1) containing 1,589,065

words and 9,753 name strings.  Performance was high (F1 = 0.86).  Overall,  GNFinder

produced  2,559  errors  (758  false  positives  and  1,801  false  negatives)  out  of  9,753

scientific name strings. The annotators recorded 1,939 unique vernacular name strings, but

these were not used in the performance metrics.

All Manuscripts

Precision 0.91

Recall 0.82

F1 Score 0.86

False Positives 758

False Negatives 1801

Total Words 1589065

Total Name Strings 9753

Error Analysis

GNFinder made 2,559 unique errors, most of which were false negatives (70%) due to

GNFinder  not  being  able  to  read  figures,  trinomial  abbreviations  (such  as  L. g. 

confertiflora), unusual  formatting  and  punctuation  used  to  save  room  in  tables,  and

parentheses in names (such as Nanorana (Paa) bourreti). GNFinder is not designed to

Table 1. 

GNFinder Performance Metrics.
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perform well on virus names. Properly formed abbreviations, such as C. familiaris were

returned and parsed by GNFinder, but were not verified.

Comparison to Other Tools

GNFinder had the highest F1 Score (Table 2), but LINNAEUS had the highest precision

and  TaxoNERD  had  the  highest  recall.  The  comparison  of  different  tools  was  very

challenging because each tool was designed for a slightly different task. Both LINNAEUS

and TaxoNERD were designed to find vernacular names in addition to taxonomic names

while GNFinder, Taxon Finder, and NetiNeti were designed to only find Latinized taxonomic

names. Vernacular names had to be manually removed from LINNAEUS and TaxoNERD

results before calculating performance. Quaesitor conflated finding the name with resolving

the  name  and  did  not  return  higher-level  taxon  names,  which  artificially  lowered  the

reported performance. For example, because Quaesitor returns the resolved name instead

of the found name, it appears to miss abbreviated names (high false negatives) and return

names that  are  not  present  (high  false  positives).  ORGANISMS returned  NCBI  Taxon

identifiers only, which made comparison impossible.

Tool Precision Recall F1 Score

Taxon Finder 0.930 0.827 0.875

NetiNeti 0.903 0.803 0.850

GNFinder 0.917 0.838 0.876 

LINNAEUS 0.981 0.166 0.284

TaxoNERD 0.731 0.879 0.798

Quaesitor 0.466 0.428 0.446

Metadata Coverage Assessment

For the majority of this subset of the 215 publications, all of the taxa were referenced in the

publication, but one data package had 78% of taxa appearing in the data file only (Table 3).

One third of the data packages (29%) had 50% or more of the taxon concepts appearing

as vernacular names only. The taxa appearing only as anything other than a well formed

taxonomic name were few, but not zero.

Of the 8,710 names returned by GNFinder from 215 publications, 1,258 were updated to a

current name according to Catalogue of Life (default setting) by GNVerifier (14.4%). The

manuscripts containing these names had been published from 1996 to 2012 with most

published in 2012 (41%) and 2011 (32%).

Table 2. 

Name-Finding Algorithm Performance Metrics.

8 Thessen A et al



Total Number of

Taxa

Taxa in manuscript

(%)

Taxa in data files

only (%)

Taxa as vernaculars

only (%)

Taxa as irregular names

only (%)

116 98.3 1.72 6.9 0.0

27 100.0 0.0 18.5 0.0

137 99.3 0.7 0.7 0.0

10 100.0 0.0 50.0 0.0

37 100.0 0.0 0.0 0.0

49 100.0 0.0 18.4 2.0

26 100.0 0.0 3.8 3.6

18 100.0 0.0 55.6 0.0

36 100.0 0.0 5.0 0.0

19 100.0 0.0 68.4 0.0

127 21.3 78.7 5.5 0.0

18 100.0 0.0 22.2 0.0

37 100.0 0.0 18.9 0.0

56 100.0 0.0 8.9 8.9

43 100.0 0.0 14.0 2.3

12 100.0 0.0 91.7 0.0

5 100.0 0.0 100.0 0.0

Discussion

Data are rendered non-discoverable because of the ways taxonomic names change over

time and because of the idiosyncratic ways in which names are expressed. The Global

Names  project  recognizes  that  names  may  be  expressed  in  various  forms,  and  the

infrastructure has been designed so that  we can extend GNFinder  to  parse additional

variant forms (Patterson et al. 2016). The results can be mapped to the canonical form of a

name (i.e., the Latin binomial, genus name capitalized with a single space separating it

from the species epithet, no annotations and no authority information), and then track the

canonical form to a currently accepted name through an understanding of synonymies.

This process is illustrated in this study and with the iPlant TNRS service that uses the

GNParser (Boyle et al. 2013).

GNFinder can find scientific names in text and resolve name strings to a current name in a

user-chosen list. This is also known as Named Entity Recognition (NER) and is a very

active area of research in the Natural Language Processing and Machine Learning fields

(Goyal et al. 2018). In addition to GNFinder, there are other algorithms that perform NER

for taxa (see results above). LINNAEUS does an excellent job of finding species names in

Table 3. 

Location of Taxonomic Names in Data Packages.
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text and resolving those names to concepts in the NCBI taxonomy with very high precision

(Gerner et al. 2010). TaxoNERD uses a deep neural network (DNN) to find mentions of

taxa  in  text  with  very  high  recall  (Le  Guillarme and  Thuiller  2022).  Our  intention  with

GNFinder is to balance precision and recall, as is suggested by these results. Comparing

the results  of  these different  algorithms was difficult  and can be misleading.  The ideal

method for  comparing algorithm outputs  is  to  compare their  results  against  a  publicly-

available  gold  standard  corpus.  Two potential  corpora  exist,  COPIOUS (Nguyen et  al. 

2019) and S800 (Pafilis et al. 2013), but none of these algorithms have processed both.

Additionally, the algorithms have subtle differences in the scope of their results.

The name-resolution function performed by GNFinder also serves as quality control for

resources like BHL, which have used Optical Character Recognition (OCR) as part of the

digitization process. OCR can introduce errors in names at rates that depend heavily on

the language and typography used (historical texts are particularly vulnerable) (Wei Q et al.

2010).  When first  checked over a decade ago, approximately 30% of taxonomic name

strings in BHL contained an OCR error (Freeland 2009). Since then, OCR errors have

been greatly reduced in BHL (Anonymous 2014, Mika 2017),  but the need to find and

correct misspellings in large corpora at scale has not disappeared. GNFinder can address

these errors by resolving novel misspellings through its use of naive Bayes. In this way, a

one-of-a-kind, erroneous name string can be recognized and resolved to a current name.

Not all of the 11,692 unique name strings identified by human annotators were properly

formed scientific names and their regular abbreviated forms. A properly formed scientific

name, for the purposes of this paper, includes a binomial (Panthera leo), trinomial (Felis 

silvestris lybica), or higher level taxon name with or without the authority and the regular

abbreviation (P. leo). This is important because the semi-supervised portion of GNFinder

relies on the rules of nomenclature to identify scientific names in text. Out of all  of the

documented ways a taxonomic name can be represented (Patterson et al. 2016), there

were four types of taxon name modification that reduced GNFinder performance.

1. Irregular abbreviation. Irregular abbreviations were scientific names shortened by

any means except: a) the first one or two letters of the generic name with the first

capitalized,  b)  followed by  a  full  stop  and a  space,  c)  followed by  the  specific

epithet.  Often  these  included  names  with  strain  designations  or  location

information. While regular abbreviations were identified by GNFinder, they were not

resolved by GNVerifier.

2. Unusual punctuation or spacing. Unconventional spacing and punctuation can

be used to  represent  hybrids,  species complexes,  or  unofficial  specific  epithets

such as Aus bus × cus, Aus bus/cus, and Aus “bus”. 

3. Improper capitalization. Publications will sometimes contain a genus name that is

not  capitalized  or  a  specific  epithet  that  is  capitalized,  such  as  E.  Caballo.

GNFinder  needs  the  capitalization  to  recognize  the  genus  name  and  specific

epithet. 
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4. Adding  two  letter  qualifier  abbreviations.  Manuscripts  often  have  qualifiers

added to the names, such as cf. aff. or sp. When these abbreviations occur within

the name string, GNFinder will not recognize the binomial. When they occur after

the name string, such as Bos sp., GNFinder will  include the sp. in the returned

name string.

The benefits of including all mentioned taxa as metadata are unclear because a paper may

be about one specific taxon, but mention several; so, including all mentioned taxa could

lead to less precise document retrieval. Author-supplied keywords and algorithms that can

detect keywords from text (Huang et al.  2020) can increase the precision of document

search, especially for publications that are about a single taxon; however, keywords are

limited to 5-10 and many studies produced data for  more than 5-10 taxa.  Additionally,

keyword  extraction  algorithms,  like  NER-RAKE,  are  not  designed  for  taxonomic  name

extraction  (Huang  et  al.  2020).  GNFinder  includes  in  its  results  the  “mainTaxon”  and

“mainTaxonRank” for each document, which can partially address this issue by reporting

the lowest rank taxon that includes at least 50% of all the mentioned species.

The utility  of  including mentions of  taxa above the rank of  genus is  also unclear.  The

argument against this is that parent taxa can be automatically added from an authoritative

hierarchy when a taxon is detected; thus, keeping the search criteria broad enough to

include them decreases precision of the algorithm and the document search unnecessarily.

The arguments for this are the cases where only higher level taxa are mentioned and in the

cases where more than one genus has the same name. A path forward is to add both types

of  higher  level  taxa  (i.e.,  found  and  inferred)  to  the  metadata  file  and  label  them

appropriately.

These results suggest that the majority of relevant taxa are mentioned in the publication

and  thus  searching  the  publication  file  will  generate  most  of  the  needed  taxonomic

metadata for the accompanying data. This argues that the first priority for future GNFinder

development should be improving the extraction of names from published manuscripts,

especially proper handling of names in figures. It is known that not all data are published

(Heidorn 2008, Shin et al. 2020), but the proportion of digitized data that do not have an

accompanying publication is unclear. The data in Table 3 argues that identifying vernacular

names and reading files that are not in .txt  format should be the next priorities. Name

detection in text written in languages other than English was not discussed here, but is

already part of future development plans for GNFinder.

Conclusion

Taxonomic  names are  useful  metadata  for  finding,  accessing,  integrating,  and  reusing

data, but only if they can be effectively resolved when there are changes in taxonomy, or

when a name represents more than one species concept. GNFinder demonstrates good

overall performance on finding name strings that occur in text representing taxa across the

tree of life. In this study, approximately 14% of names used in publications 10–20 years old

were out-of-date and were mapped to a current, valid name by GNVerifier. Furthermore,

Improving the discoverability of biodiversity data using the Global Names ... 11



the speed of GNFinder makes it possible to apply names as living metadata to the entire

body  of  published  literature.  Without  name-finding  algorithms,  much  biological  content

cannot be accessed by searches based on the taxon name. The use of GNFinder to tag

files with appropriate taxonomic metadata improves discovery on an unprecedented scale.

The major advance of GNFinder is the almost unlimited scalability and reliability, while still

preserving reasonably high quality of name detection.
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Endnotes
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